Brain Spots on Imaging Tests
To Be or Not to Be Concerned

Metropolitan Underwriting
Discussion Group
1/29/13

Charles Levy, MD
Aviva USA
CT and MRI

2 most common forms of brain imaging today

- As with any diagnostic test
 - Risks of imaging have to be weighed against benefits of identifying treatable disease
 - With acceptable sensitivity and specificity
CT

• Used to be modality of choice for non-invasive assessment of the brain
 – Now study of choice mainly in cases
 • Trauma
 • Acute neurologic emergencies
 – Acute Stroke
 – Intracranial hemorrhage
 – Intracranial or spinal trauma
 – Detection of fine bone detail and skull fractures
• Advantage
 – Faster than MRI
 • Study of choice in acute situations

• Disadvantages
 – 15X more radiation than a chest x-ray
 – Less contrast resolution for soft tissue abnormalities or normal structures than MRI
 – Requires contrast injection for angiography
MRI

• Advantages
 – No radiation exposure
 – Does not require contrast injection for angiography
 – More sensitive for detection of
 • Normal brain anatomic structures
 • CNS and intracranial lesions
 • Cranial nerves
 • Posterior fossa structures
 • Pituitary
 • Acute and chronic bleeding in the brain
MRI (2)

• More sensitive for detection of (cont.)
 • All soft tissue abnormalities
 – FLAIR images allow better discrimination between solid tissue and edema
 – DWI images improve
 » detection of acute ischemic stroke
 » differentiating acute stroke from other processes that cause acute neurologic events

• Also excels at detecting brain lesions in asymptomatic individuals
• Has replaced CT in brain imaging
 – Except in patients with contraindications to MRI
• Contraindications to MRI:
 – Metallic fragments, clips or devices in the brain, eye, spinal cord
 • Includes intracranial clips
 – Magnetically activated implanted devices:
 • Cardiac pacemakers, insulin pumps, neuro-stimulators, cochlear implants
• Metal outside the brain and eye is NOT a contraindication:
 – Cardiac valves, inferior vena cava filters, biliary and vascular stents, IUD's, metallic prostheses
MRI (5)

- Disadvantages due to its increased use and superior tissue definition/resolution
 - Studies in sick and healthy persons both show MRI to be oversensitive
 - Displays even incidental white matter foci without underlying pathology
 - Other incidental findings
Definition:
Incidental findings on brain imaging are defined as previously undetected abnormalities of potential relevance

- Unexpectedly discovered
- Unrelated to the purpose of the imaging
Case #1

40 yom $750,000 Term

• on NBExam noted dizziness for the past few years for which an MRI was done as part of the w/u

• 1/11 MRI: Impression: **Solitary indeterminate right frontal white matter abnormal foci.** *This is nonspecific but could represent focal gliosis from prior inflammation or possibly vasculitis, the sequelae of migraine headaches and less likely demyelination or atypical infection.* O/w normal MRI.

• episodic confusion, problems focusing and confused, panic sensation, may pass out. Sx remain intermittent and similar thru end of APS 1/12.

• EEG, MRA, w/u for inflammatory dis all neg, no history of seizures
Case 2

38 yof, $500,000 Term
- 1/10 c/o headaches, paresthesias left side of face, vision blurred with focus on small objects
- APS notes thru 6/11 with no recurrence of symptoms
- also hx of obesity, impaired glucose tolerance, hypertension poorly controlled in ’10 but better since.
- 1/21/10 MRI: 3 foci of hyperintense T2 signal in the white matter of the left frontal lobe measuring 3 mm in size. Nonspecific in etiology of the type often seen in neurologically asymptomatic patients, demyelinating disease, small vessel vascular change, migraine headaches.
Case #3

50 yom $20 million UL

• 9/11 MVA, concussion, dizziness, hard to read, vertigo
 – Bilateral high frequency hearing loss, ENG abnormal, less reactive left labyrinth
 – EBCT score +25

• 10/11 MRI: *a few punctate scattered non-specific supratentorial white matter abnormalities*
• 2000 participants
 – Ages 45-96 (mean 63.3)
 – 54.7% female
 • Ages 45-59: 94.6% were found to have asymptomatic “white matter changes”
 • >age 75: increased to 98%
 – 272 (13%) were found to have incidental findings other than “white matter changes”
– Other than “white matter changes include:
 • Asymptomatic stroke
 – Lacunar infarct > cortical infarct
 • Aneurysms
 • Benign tumors (esp. meningiomas)
 • Arachnoid cysts
 • Cavernous hemangiomas
 • 1 urgent finding
 – possible low grade glioma
• 15, 559 participants
• Incidental finding in 1 out of every 37 asymptomatic people scanned (2.7%)
 – 2.0% non-neoplastic
 – 0.7% incidental neoplastic findings
• These 420 incidental findings are in addition to already excluded
 – White matter hyperintensities
 – Microbleeds
 – Silent infarcts
Trends in Both Studies

• Increasing prevalence of all neoplastic incidental brain findings with age
 – Probably related to meningiomas

• Increasing prevalence of “white matter changes” with age

• Extremely small number of incidental findings that required specific treatment
 – MRI has been available for 20-30 yrs
 • Long term prognosis of some incidental findings not fully known yet
White Matter Hyperintensities

• Most frequent incidental findings in brain MRIs

• Common finding on neuro-imaging associated with
 – Aging
 – Medical illness
 – Some invasive medical procedures
 – Hypertension
 – Migraine headaches
 – Multiple sclerosis
White Matter Hyperintensities (2)

• Most important to consider in context and with the significant differentiating elements
 – Number
 – Size
 – Location
 – Presence or absence of edema
 – Reaction to contrast medium
 • Including Gadolinium
 – Evolution in time
White Matter Hyperintensities (3)

• Have been concluded to be associated with increased risk of
 – Overall increased risk of cerebrovascular events
 – Dementia and faster decline in cognitive function

• However, they can not be considered in isolation from clinical data and other diagnostic test results
 – Think of them more as a predictive test like an EBCT or carotid IMT (Intima Media Thickness)
 • Than as an indicator of a specific problem to be treated now
Conclusions

• Circle back to the case studies in light of the information about
 – Frequency of incidental findings of white matter hyperintensities without relationship to specific disease or need for specific treatment
 – Possibility that these incidental white matter hyperintensities constitute a risk factor rather than a marker of a specific disease entity
Advantages MRI over CT

- Better defines intracerebral hemorrhages
 - old and new.

- More sensitive than CT for the early diagnosis of brain infarction.

- Better determines the precise location and size of the infarction and

- Better follows the lesion over time.
• Advantages MRI over CT (p.2)
 – Lacunar infarcts and small cortical strokes are seen with higher sensitivity.

 – FLAIR images show infarcts earlier after onset of symptoms.

 – DWI images are useful in distinguishing acute from chronic ischemic changes
• Does a normal CT or MRI rule out stroke?
 – No.
 • It is important to remember that in patients with ischemia who do not yet have infarction, both CT and MRI may be normal.

• Repeating the scan in 48 hours will most likely demonstrate the stroke lesion.

• Sub-acute infarct (1 to 8 weeks):
 – Contrast enhancement slowly decreases in time but can persist for 8 weeks, with decreasing mass effect and abnormal signal intensity.
TIA vs CVA

- Transient Ischemic Attack
 - Acute episode of temporary neurologic dysfunction
 - Resulting from focal cerebral, spinal or retinal ischemia
 - Not associated with permanent cerebral infarction
 - Sudden onset
 - Duration < 24 hours
 - Clinical symptoms typically last < 1 hour

- CVA and not TIA if:
 - Clinical signs or symptoms last >24 hours
 - Evidence of infarction on imaging
Cerebrovascular Lesions

- Subclinical vascular pathologic changes
 - Silent cortical infarcts
 - Lacunar infarcts
 - White Matter Hyperintensities
- Linked to
 - Increased risk of stroke
 - Cognitive decline
- Acute ischemic stroke patients
 - 11-29% found to have unrelated additional infarcts
Cerebrovascular Lesions (2)

• Silent infarct:
 – Incidentally found lesions with appearance typical of infarction
 – Without clinical history compatible with clinical stroke
 – Strong relationship with age and other stroke risk factors
 • Suggests they may themselves be risk factors for significant cerebrovascular disease
 – Important risk factor for
 • Further stroke
 • Dementia
Global cognitive function significantly worse
- With silent brain infarcts on baseline MRI than without
Lacunar stroke

- Small deep infarcts that result from occlusion of a penetrating artery
- Account for about a quarter of all ischemic strokes
- Commonly had been regarded as benign vascular lesions with a favorable long-term prognosis
- Recent studies have shown that is only the case early in the disease course but in the years after the infarct:
 - increased risk of death, mainly from cardiovascular causes.
 - risk of recurrent stroke after lacunar infarct is similar to that for most other types of stroke
 - increased risk of developing cognitive decline and dementia.
Conclusions

• MRI more sensitive than CT for detection of all cerebrovascular ischemic abnormalities
 – Symptomatic CVA
 – Silent CVA
 – Lacunar infarct

• MRI detects acute infarct earlier
 – If not seen on initial MRI
 • Repeat may be warranted in 48 hours if neurologic deficit persists without adequate alternative explanation
Conclusions (2)

• Infarct/CVA not necessarily ruled out (or TIA ruled in) with negative (even negative repeat) imaging if symptoms last >24 hours

• Silent infarcts, lacunar infarcts and white matter hyperintensities increase the risk for additional cerebrovascular insults/cognitive decline
American Heart Assn. guidelines for unruptured cerebral aneurysms

• Taking into consideration
 – Age
 – Past history of cerebral aneurysm
 – Family history
 – Genetic/familial conditions
Aneurysms (2)

- All symptomatic aneurysms should be treated
- Incidental aneurysms
 - <10 mm without history of SAH should be treated conservatively
 - Anterior circulation aneurysms less likely to rupture
 - Small aneurysms approaching the 10-mm diameter size should be considered for treatment if:
 - Unique features
 - Family history of aneurysm or SAH
 - Past history of aneurysm or SAH
Aneurysms (3)

- Factors that favor surgery include
 - A young patient
 - Long life expectancy
 - Previously ruptured aneurysms
 - Family history of aneurysm
 - Large aneurysms
 - Symptomatic
 - Observed aneurysm growth
Aneurysms (4)

- Factors that favor conservative management include
 - Older patient age
 - Decreased life expectancy
 - asymptomatic small aneurysms
 - Especially anterior circulation
Subarachnoid Hemorrhage (SAH) with Negative Angiography

• Ruptured cerebral aneurysm is the most common cause of spontaneous SAH
• The aneurysm may not be visualized in up to 17.5% of cases where there is one due to
 – Small aneurysm size
 – Vascular spasm of the parent artery
 – Thrombosis of the aneurysm
• A second angiogram should be performed a week later
 – If negative
 • Risk of non-visualized aneurysm is low
 • Prognosis is good
Conclusions

- Increased sensitivities of MRIs will find more asymptomatic aneurysms
 - Not all unoperated aneurysms have the same mortality risk profile
 - Size
 - Location
 - Age
 - Family history
 - Past history
- One negative imaging study after SAH may not be adequate to rule out an underlying aneurysm
Venous angioma

- Currently called Developmental Venous Anomalies (DVA) in Medical Literature
- Still called Venous Angioma in UW Guides

Will be referred to as DVA in this presentation and in the Medical Records you obtain
DVA/Venous Angioma (2)

• Congenital anomalies of the intracranial venous drainage.

• Highest prevalence rate of all intracranial vascular malformations
 – Commonest intracranial vascular malformation seen at autopsy
 – Previously considered to be rare until the advent of CT and MRI scanning
 – Now considered to be NORMAL VARIANT of cerebral venous system
• Presentation (reason the scan was done) variable and non-specific
 – Most are incidental findings on MRI
 – Headache most common symptom prompting the MRI
 – Most of the symptoms prompting the scan not related to the lesion
• Isolated DVA represents no additional mortality risk
 – Because these anomalies provide a useful and important blood draining function, in no case should they be excised or radiated
 – Do not require routine removal
• UW Manuals suggest a different risk profile between supratentorial vs infratentorial lesion
 – Due to different risk profile from bleeding in the brainstem (infratentorial) region
 – May not be consistent with latest medical literature findings
- **cerebrum**
The cerebrum (supratentorial or front of brain) is composed of the right and left hemispheres.

- **brainstem**
The brainstem (midline or middle of brain) includes the midbrain, the pons, and the medulla.

- **cerebellum**
The cerebellum (infratentorial or back of brain) is located at the back of the head.
• **cerebrum**
The cerebrum (supratentorial or front of brain) is composed of the right and left hemispheres.

• **brainstem**
The brainstem (midline or middle of brain) includes the midbrain, the pons, and the medulla.

• **cerebellum**
The cerebellum (infratentorial or back of brain) is located at the back of the head.
• Often associated with Cavernous Angiomas
 – (also known as Cavernous Hemangiomas)

• Cavernous Angiomas should be treated
 – If >10 mm in size
 – Multiple lesions
 – If any evidence of prior bleed
 • Including hemosiderin deposition
 • Infratentorial location
 – If possible leaving associated DVA intact
Multiple Sclerosis on MRI

• Classic MS brain lesion
 – T2 hyperintense lesion
 • Called plaques
 • Can be new, old or reactivated lesions

 – If Gadolinium contrast used
 • Differentiates new or reactivated lesions
 – By contrast “enhancement”
 » Enhancement lasts 4-6 weeks
 • Also picks up very new lesions not yet hyperintense
• Diagnosis of MS
 – Neurological disturbance of kind seen in MS
 • Minimum duration 24 hours
 – 2 or more MRI lesions

Or

– Asymptomatic
– 1 Gadolinium enhancing lesion or 9 hyperintense MRI lesions
While repeated scanning has become routine for asymptomatic (and incidental) meningioma

- 94% remain asymptomatic
- 63% do not grow

Factors to consider

- Location
- Stability
- Age of applicant
- Size
History of resected meningioma

MRI f/u:

Pre and postcontrast brain MRI

• Findings:
 – Again identified are post surgical changes. Right frontal craniectomy/cranioplasty, right frontal lobe surgical cavity with residual T2/FLAIR signal abnormality, stable residual right frontal dural enhancement

• Stable brain MRI findings since prior MRI. No recurrent tumor
Conclusions:

• Additional MRI incidental findings:
 – Isolated DVA produces no additional mortality risk
 – Findings suggestive of MS need to be taken in context as described
 • And diagnostic criteria followed before diagnosis or risk profile for MS attached
 – Post-op changes on the MRI f/u of a resected meningioma should not be confused with recurrent tumor